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A general model for the kinetics of solid state phase transformations has been discussed.
The model is valid for both isothermal as well as non-isothermal transformations. In certain
specific cases, the model can be simplified such that it reduces to so-called
Johnson-Mehl-Avrami (JMA) kinetics. The model kinetic parameters are independent of the
time-temperature program. In addition, it has been shown that in certain cases where the
presented model does not pertain to JMA exactly, the JMA description still holds within
practical accuracy. This holds for example, for nucleation of mixed nature. In this case, it is
possible to obtain the activation energies for growth and for nucleation, separately, from
measurements, if it is possible to vary the nucleation mode, for example by pre-annealing.
This determination of the separate activation energies has been tested on a virtual and a
real phase transformation: crystallisation of glassy Pd40Cu30P20Ni10.
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1. Introduction
Solid state phase transformations play an important role
in the production of very many materials. Therefore, a
great interest exists for a (potentially) general descrip-
tion of the kinetics, i.e. the time-temperature behaviour
of phase transformations. Solid state phase transfor-
mations are generally the outcomes, for both isother-
mally and non-isothermally conducted annealings, of
two, often simultaneously operating, mechanisms: nu-
cleation and growth. For special cases of nucleation
and growth, it is possible to derive the well-known ana-
lytical description of transformation kinetics according
to Johnson, Mehl and Avrami (JMA) [1–4]. However,
the JMA kinetics description is often applied generally,
whereas it can be shown that, e.g. in the case of a non-
isothermal transformation, such an analytical descrip-
tion does not hold without more ado (cf. Section 4).
Therefore, fitting of JMA kinetics to some phase trans-
formation in general only yields a phenomenological
description, and the obtained kinetic parameters do not
necessarily have a physical meaning.

In the present work, a general kinetic, numeri-
cal model is described that combines nucleation and
growth models. The model is applicable to both isother-
mal and non-isothermal transformations. This allows
correction of erroneous application to non-isothermal
transformation of certain concepts that in fact are only
valid for isothermal transformations (see Section 2).

∗Author to whom all correspondence should be addressed.

Depending on the type of nucleation and growth mod-
els adopted and approximations applied, it is possible
to derive analytical expressions for the transformation
kinetics, such as the JMA equation, as will be shown
here.

The general model will be used (i) to assess the limits
to which JMA can be applied in practice, (ii) to pro-
vide a physical interpretation of the values of the JMA
parameters and (iii) to derive an expression for the over-
all activation energy of the transformation in terms of
the separate activation energies for the nucleation and
growth processes, that can be utilised in experimental
analysis of transformation kinetics (Section 6).

2. The path variable for isothermal
and non-isothermal transformations

By measuring a suitable material parameter during a
phase transformation, it is possible to trace the progress
of this phase transformation as a function of the time
(t)-temperature (T ) program to which the material is
subjected. The degree of transformation f (0 ≤ f ≤ 1)
can be calculated from such data. The transformed frac-
tion does not depend on t or T (t) in a direct way:
the thermal history of the material determines the de-
gree of transformation. Therefore a path variable β

is introduced which fully determines the degree of
transformation, and depends on the thermal history. The
transformed fraction can then be given as [5]:
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f = F(β). (1)

The dependence of the path variable β on the thermal
history (i.e. the path in the time-temperature diagram)
can be described as the integral over time of a rate
constant k(T (t)), not conceived to be dependent on t
other than through T :

β =
∫

k(T (t)) dt . (2)

This equation is compatible with the additivity rule [5],
which supposes that throughout the temperature/time
range of interest the transformation mechanism is the
same. A change of transformation mechanism in the
course of the transformation, as might be caused by a
rate constant k(T (t)) that is not solely dependent on
T (t), would cause a breakdown of the additivity rule
and the applicability of Equation 2 for the path variable.
The rate constant k(T (t)) can be given by an Arrhenius
equation:

k(T (t)) = k0 exp

(
− Q

RT(t)

)
, (3)

with k0 as the pre-exponential factor, Q as the overall,
effective activation energy (cf. Section 4), and R as the
gas constant.

It follows from Equation 2 for isothermal annealing:

β = k(T )t. (4)

In the literature, kinetic theories for non-isothermal
transformations have usually been derived starting with
formulations for isothermal transformations [6–9]. If
a non-isothermal experiment is described as a series
of subsequent isothermal anneals, each of infinitesi-
mal length of time, and Equation 4 is applied to each
time step (as done in refs. [7, 9] for isochronal (i.e.
constant heating rate) experiments), then, obviously,
the outcome is in accordance with the postulate Equa-
tion 2. However, in the literature, the straightaway ap-
plication of an equation equivalent to Equation 4 to
isochronal annealing is often made (see, e.g. ref. [8]).
This leads to different values of kinetic parameters for
different type of annealings. This different values of

Figure 1 Schematic diagram of the number of nuclei as a function of time at constant temperature for four different nucleation models.

kinetic parameters are solely caused by the different
formulation of the kinetic model for different type of
annealings, not by the non-isokinetic transformation
behaviour. The main advantage of using the path vari-
able according to Equation 2, is that the values of the
kinetic parameters found are not influenced by the type
of annealing as long as the mechanism of the transfor-
mation is also not influenced by the type of annealing.

3. General kinetic theory
It is supposed that the overall transformation is the
result of, more or less, simultaneously occurring nu-
cleation and growth processes. One strives for deter-
mination of the kinetic parameters of these processes
from the overall kinetics. First, different nucleation and
growth models are considered.

3.1. Nucleation models
Various possible models are illustrated in Fig. 1, for the
case of isothermal annealing.

3.1.1. Continuous nucleation
Upon a phase transformation interfaces develop be-
tween the old and the new phases, and (possibly) misfit
strain is introduced in the system. Whereas the produc-
tion of the new phase releases chemical Gibbs energy,
the creation of the interfaces and the introduction of
misfit strain costs Gibbs energy. According to the clas-
sical nucleation theory [10], a critical particle size of
the new phase can be defined such that if the particle
(nucleus) is of sub-critical size, it costs energy to in-
crease the size of the particle, whereas if the particle
(nucleus) is of super-critical size, energy is released if
the particle grows. The formation of particles of super-
critical size from particles of sub-critical size is called
nucleation.

The nucleation rate is determined by the number of
nuclei of critical size and the rate of the jumping of
atoms through the interface between the nucleus of crit-
ical size and the parent phase. The frequency of jump-
ing through the interface is given by an Arrhenius term.
The number of nuclei of critical size depends on an ac-
tivation energy �G∗, which, according to the above
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description depends on the decrease of the chemical
Gibbs free energy per unit volume, the interface energy
per unit area interface and the misfit strain energy per
unit volume. �G∗ can be approximated as A

�T 2 [11],
where A is a constant, and �T is the undercooling
or overheating with respect to the temperature at which
the two phases are in equilibrium. If the undercooling or
the overheating is very large, �G∗ can be considered to
be very small. This is the case for a frozen-in metastable
state, which transforms to the stable state upon heating.
The nucleation rate per unit volume Ṅ (T ) (i.e. the rate
of formation of particles (nuclei) of supercritical size) is
then only determined by the atomic mobility for trans-
port through the interface, which can be given by an
Arrhenius term:

Ṅ (T ) = N0 exp

(
− QN

RT

)
, (5a)

where N0 is a temperature independent rate, and QN

is the temperature independent activation energy for
nucleation. The definition of continuous nucleation
implies that the number of particles (nuclei) N of su-
percritical size equals 0 at t = 0.

3.1.2. Site saturation
The term site saturation is used in those cases where
the number of (supercritical) nuclei does not change
during the transformation: all nuclei, of number N ∗,
are present at t = 0 already:

Ṅ (T ) = N ∗δ(t − 0), (5b)

with δ(t − 0) denoting the Dirac function.

3.1.2.1. Mixture of site saturation and continuous
nucleation. In practice, intermediate types of nucle-
ation occur often: a significant amount of nuclei is
present before the transformation starts and other nu-
clei are formed during the transformation. Two explicit
models for this type of nucleation are given.

(a) Summation of site saturation and continuous nu-
cleation.

The first model involves that the nucleation rate at
a certain stage is equal to some weighted sum of the
nucleation rates according to the given continuous nu-
cleation and site saturation models. By variation of the
contribution of the two nucleation models, the mode of
nucleation can be varied from pure site saturation to
pure continuous nucleation:

Ṅ (T ) = N ∗δ(t − 0) + N0 exp

(
− QN

RT

)
. (5c)

where N ∗ and N0 express the relative contributions of
the separate modes of nucleation.

(b) Avrami nucleation.
The second model is due to Avrami [2–4]. The nu-

clei of supercritical size are formed from the nuclei of
subcritical size Nsub (Ṅ = −Ṅsub), such that the total
number of nuclei, of sub- and supercritical size, N ′,
is constant. The change of the number of nuclei of
supercritical size is thus equal to the product of the

number of nuclei of subcritical size, Nsub, and the rate,
λ, at which an individual subcritical nucleus becomes
supercritical:

Ṅ = −Ṅsub = λNsub (6)

It is supposed that λ obeys Arrhenius-type temperature
dependence:

λ = λ0 exp

(
− QN

RT

)
. (7)

with λ0 as a temperature independent rate.

Upon integration of Equation 6, after separation of
variables, using Equation 7 and the boundary condition
that the number of subcritical nuclei equals N ′ at t = 0,
it is obtained for the rate of formation of supercritical
nuclei at t = τ :

Ṅ (T ) = −Ṅsub = λN ′ exp

(
−

∫ τ

0
λ dt

)
. (5d)

By variation of λ0 the mode of nucleation can be varied
from site saturation (λ0 infinitely large) to continuous
nucleation (λ0 infinitely small).

3.2. Growth models
Two (extreme) growth models are considered; one for
volume diffusion controlled growth and one for inter-
face controlled growth. Volume diffusion controlled
growth can occur upon phase transformations where
long range compositional changes take place. The case
of interface controlled growth can occur in the absence
of compositional changes, e.g. in cases of allotropic
phase transformations.

3.2.1. Diffusion controlled growth
In this case, long distance diffusion in the matrix gov-
erns the growth of the new phase particles. A charac-
teristic diffusion length, L , is in the isothermal case
given by

L = (Dt)1/2, (8a)

where D is the diffusion coefficient. The squared diffu-
sion length is proportional to the time. This leads to so-
called parabolic growth laws for phase transformations.
For non-isothermal annealing the characteristic diffu-
sion length is accordingly given by (e.g. see ref. [12]):

L =
(∫

D(T (t)) dt

)1/2

. (8b)

The diffusion coefficient depends on temperature ac-
cording to:

D(T (t)) = D0 exp

(
− QD

RT

)
, (9)

with D0 as the pre-exponential factor and QD as the
activation energy for diffusion.

Growth laws corresponding to Equations 8a and b
are only valid for growth of a second phase particle
into an infinitely large parent phase matrix, and thereby
application of such growth laws is strictly valid only for
initial stages of transformation (see also ref. [13]).
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If Equations 8a and b hold, the volume of the growing
particle, Y , is given by:

Y = gLd , (10)

with d as the number of dimensions in which the particle
grows and g as a particle-geometry factor.

3.2.2. Interface controlled growth
In this case, processes at the particle/matrix interface
govern the growth of the new phase particle. The veloc-
ity of the particle/matrix interface is determined by the
net number of atoms that jump through the interface
from the matrix to the new phase particle per unit of
time. The Gibbs energy of an atom in the new phase
differs an amount �G with the Gibbs energy in the
parent phase (�G is the driving force for the phase
transformation; i.e. �G < 0). The transfer of this atom
is however frustrated by the interface, which forms an
energy barrier. The Gibbs energy of an atom in the in-
terface differs an amount �Ga with the Gibbs energy
in the matrix (i.e. �Ga > 0).

The net flux of atoms from the parent phase to the
new phase particle is the difference between the flux
of atoms from the matrix to the particle and the flux
of atoms from the particle to the matrix. The flux of
atoms in one direction can be given by an Arrhenius
equation with the corresponding Gibbs energy barrier
as the activation energy. If the pre-exponential factors
for both fluxes are equal, the net flux for growth, J , can
be given as [10]:

J ∝ exp

(
−�Ga

RT

)
− exp

(
−�Ga + �G

RT

)

= exp

(
−�Ga

RT

)(
1 − exp

(
−�G

RT

))
. (11)

If the driving force �G is large as compared to RT , as
for large undercooling or overheating, then it follows
for the net flux:

J ∝ exp

(
−�Ga

RT

)
(12)

The flux, J , is proportional to the interface velocity, j ,
and therefore the volume of a growing particle, Y , is
given by:

Y = g

(∫
j dt

)d

j = j0 exp

(
−�Ga

RT

)
, (13)

where j0 is a temperature independent interface velocity.

3.2.3. Diffusion controlled growth
and interface controlled growth

Both growth models, diffusion controlled growth and
interface controlled growth, represented by Equa-
tions 10 and 13, can be given in a compact form. At

time te, the volume, Y , of a particle nucleated at time τ

is given by:

Y = g

(∫
te

τ

v dt

) d
m

v = v0 exp

(
− Qg

RT

)
, (14)

with v0 as the a temperature independent growth ve-
locity, Qg the activation energy for growth, and m as
the growth mode parameter. For the case of diffusion
controlled growth, m = 2, Qg equals Q D (activation
energy for diffusion) and v0 equals D0. For the case
of interface controlled growth m = 1, Qg equals �Ga

(interface energy barrier) and v0 equals j0.

3.3. Impingement of growing particles;
the total degree of transformation

The number of (supercritical) nuclei formed in a unit
volume, at time τ during a time lapse dτ is given by
Ṅ (T (τ )) dτ with Ṅ (T (τ )) according to Equation 5. The
volume of each of these nuclei grows from τ until t ac-
cording to Equation 14, where it is supposed that every
particle grows into an infinitely large parent phase, in
the absence of other growing particles (see discussion
below Equation 9). The volume of all particles at time
t , according to this treatment is then given by:

Ve =
∫ t

0
VṄY dτ, (15)

with V as the total volume of the system, which is
supposed to be constant throughout the transformation.
This result, Ve, is called the extended volume. Clearly,
in reality, the particles are not growing into an infinitely
large parent phase: Ve does not account for the overlap
of particles (hard impingement) and their possibly sur-
rounding diffusion fields (soft impingement). There-
fore, the relationship between the extended volume
Ve and the actual volume V t of transformed phase is
required.

It is supposed that the nuclei are dispersed randomly
throughout the volume. Suppose that at time t the actu-
ally transformed volume is V t . If the time is increased
by dt , the extended and the actual transformed volumes
will increase by dVe and dV t . From the change of the
extended volume dVe, only a part will contribute to the
change of the actually transformed volume dV t , namely
a part as large as the untransformed volume fraction
(V – V t )/V . Hence,

dV t =
(

V − V t

V

)
dVe. (16)

This equation can be integrated, giving the degree of
transformation, f , as:

f ≡ V t

V
= 1 − exp

(
−Ve

V

)
. (17)

3.4. Summary of main assumptions
For the above treated nucleation and growth models,
some assumptions have been made.
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It has been assumed, (i) in both the continuous nu-
cleation model (Section 3.1.1) and in the interface
controlled growth model (Section 3.2.2) that the under-
cooling, or the overheating is large, in order to obtain
an Arrhenius temperature dependence for the contin-
uous nucleation and growth rates. In the literature the
use of an Arrhenius-like temperature dependence for
both the nucleation rate, and for the growth rate has
been assumed several times, without motivation (e.g.
see refs. [6, 8, 9, 14]). It should be recognised that such
a description of the growth rate and especially the nu-
cleation rate is problematic if the undercooling is small
[15, 16]. Experimental proof of Arrhenius temperature
dependence of both the nucleation rate and the growth
rate has been obtained for the crystallisation of metallic
glasses [17].

In the impingement treatment, it has been assumed
that (ii) the nuclei are dispersed randomly in space and
(iii) that the specific volume is constant throughout the
transformation. The assumption of randomly dispersed
nuclei is justified in the case of homogeneous nucle-
ation, and in the case of heterogeneous nucleation if
the nucleation takes place on randomly dispersed nu-
cleation sites, as with clustering of solute atoms or
crystallisation of a glass. The assumption of constant
specific volume is an approximation for almost all trans-
formations, which is justified as long as the change of
the specific volume is small.

4. Validity of Johnson-Mehl-Avrami
description

The general recipe for deriving an explicit analytical
formulation for the degree of transformation in terms
of the nucleation and growth mechanisms is as follows.
The extended volume is calculated according to Equa-
tion 15, using the appropriate nucleation (Equation 5)
and growth models (Equation 14). The expression for
the extended volume is then substituted into Equa-
tion 17 to give the degree of transformation.

4.1. Isothermal annealing
If the above recipe is applied to isothermal transforma-
tions using for nucleation, either the continuous nucle-
ation model or the site saturation model and for growth
the general model (Equation 14), pertaining to either
volume diffusion controlled growth or interface con-
trolled growth, it is straightforwardly obtained:

f = 1 − exp(−(k(T )t)n), (18)

with k(T ) as the rate constant given in Equation 3 with
constant T , and n as a constant. Note that this equa-
tion cannot be derived for a mixture of the nucleation
models (cf. Section 3.1.2.1). Equation 18 has first been
derived by Johnson and Mehl (for the case of isothermal
transformations with continuous nucleation [1] and by
Avrami (for isothermal transformations with continu-
ous nucleation and site saturation) [2–4] and therefore
it is called the JMA equation with JMA exponent n.

The above formulation of JMA kinetics is compatible
with the identification of the variable β as described by

Equation 4: function F from Equation 1 in this case
becomes:

F(β) = 1 − exp(−βn). (19)

The prescription of Equation 1 implies that the
equations describing the degree of transformation are
identical for the cases of isothermal annealing and non-
isothermal annealing if they are expressed in terms of
β (see Equations 2 and 4).

4.2. Isothermal annealing versus
non-isothermal annealing

It has been shown above that for isothermal annealing
definition of β according to Equation 4 leads to the
recognition that the JMA equation satisfies Equation 1.
Now the question arises if for non-isothermal anneal-
ing, on the basis of the considered nucleation and
growth models, (i) an equation for Ve can be de-
rived (from Equation 15) that after substitution into
Equation 17 leads to a JMA-like equation that (ii) fulfils
the prescription of Equation 1 with β defined according
to Equation 2. Additionally, if a JMA-like equation can
be obtained, the associated kinetic parameters n, Q and
k0 can be given in terms of the various nucleation and
growth models for the case of non-isothermal anneal-
ing too. In the following, it will be shown that this is
possible for, at least, the case of isochronal annealing
as long as the nucleation process involved is either site
saturation or continuous nucleation.

4.3. Isochronal annealing
The recipe for deriving an equation for the degree of
transformation given in the beginning of Section 4 can
be used in general. Now this recipe is applied to the
case of isochronal annealing characterised by:

T (t) = T0 + 
t, (20)

where T0 is the start temperature (i.e. at t = 0) of the ex-
periment and 
 is the constant heating rate. Although
the treatment is analogous to that for isothermal trans-
formations, some mathematical problems now occur.
The integrals in Equations 14 and 15 cannot be eval-
uated analytically in general, and also not for cases of
only site saturation or only continuous nucleation. An
Arrhenius term, as for example obtained by substitu-
tion of Equations 3 and 20 into Equation 2, has to be
integrated over time as follows:

β = k0

∫
te

0
exp

(
− Q

R(T0 + 
t)

)
dt, (21)

The integral in Equation 21 is also called the tem-
perature integral [5] if it is integrated over the tem-
perature, with the time dependent on temperature (i.e.
t = (T −T0)/
). Here, the integration is performed over
a new time parameter t ′ = t + T0/
, involving dt = dt ′
and T0 + 
t = 
t ′ = T (t ′). The boundaries for the in-
tegration then become T0/
 and t ′

e. If on heating T0 is
chosen small, such that β(T < T0) ≈ 0, the start of the

1325



new time scale (i.e. t ′ = T0/
) can be shifted to t ′ = 0
without changing the value of the integral [18]:

β = k0

∫
t ′e

T0



exp

(
− Q

R
t ′

)
dt ′ ≈ k0

∫ t ′
e

0
exp

(
− Q

R
t ′

)
dt ′.

(22)

Thus, an analytical approximation of the integral be-
comes possible, using a series expansion of the follow-
ing type [19]:

∫ ∞

1

e−xt

tn
dt = e−x

x

[
1 − n

x
+ n(n + 1)

x2
+ · · · ·

]
.

(23)

Application of Equation 23 requires variable substitu-
tion as described in [5]. An example of the result of
this approximation is given here for β as expressed by
Equation 22:

β ≈ k0

∫ t ′
e

0
exp

(
− Q

R
t ′

)
dt ′ ≈ k0
Rt ′2

Q
exp

(
− Q

R
t ′

)

×
[

1 − 2
R
t ′

Q
+ 6

(
R
t ′

Q

)2

− · · · ·
]t ′

e

0
(24)

For practical use (see below Equation 27), the back
substitution t ′ = T (t ′)/
 is made, and thus none of the
time parameters (t or t ′) is involved anymore. On ba-
sis of Equation 24, explicit analytical equations can
be derived for the degree of transformation in the
case of isochronal annealing, and for specific nucle-
ation and growth models following the recipe indi-
cated at the beginning of Section 4: see Appendix A.
In general, (e.g. for a mixture of nucleation mecha-
nisms (cf. Section 3.1.2.1)) the derivations do not lead
to JMA-like equations for the degree of transforma-
tion. However, for pure site saturation (Section 3.1.2)
and for pure continuous nucleation (Section 3.1.1), both
in combination with growth according to Equation 14,
JMA-like equations are obtained that are compatible
with Equation 1 with β as given by Equation 2 and k
as given by Equation 3.

The case of a mixture of nucleation mechanisms
(cf. Section 3.1.2.1)), in combination with growth, is
considered separately: see Section 6.

The above treatment leads to explicit expressions for
n, Q and k0 in terms of the operating nucleation and
growth mechanisms: see Table I.

It is striking to observe that, for the nucleation and
growth cases considered, the JMA parameters pertain-
ing to isothermal annealing and to isochronal annealing
are equal (except for the correction factor s). Two re-
lated treatments regarding this type of kinetic analysis
have been published before. The oldest work is incom-
plete (ref. [6]: no expression for s (cf. Table I) is given,
and diffusional growth is not considered), whereas the
more extended, recent work [8] is erroneous. In ref. [8]
equations for βn have been interpreted according to
βn = ktn for both isothermal and isochronal annealing,
whereas Equation 2 and Equation 3 should have been
used for non-isothermal (isochronal) annealing. Then,

TABLE I Expressions for n, Q, and k0 in terms of nucleation and
growth mechanisms. The nucleation model parameters given are the
temperature independent rate N0, activation energy QN (continuous nu-
cleation, cf. Equation 5a) or the number of nuclei N � (site saturation
cf. Equation 5b). The growth model parameters are the temperature in-
dependent growth velocity v0 and the activation energy Qg for growth,
dimensionality of growth d, a geometrical factor g and the growth mode
parameter m (cf. Equation 14). The parameter s is a correction factor for
the difference between the activation energies of nucleation and growth,
specified by Equation A.17

Continuous nucleation Isothermal Isochronal

n
d

m
+ 1

d

m
+ 1a

Q
(n − 1)Qg + QN

n

(n − 1)Qg + Qa
N

n

k0
n
√

gN0v
n−1
0

n

n
√

gN0v
n−1
0 sa

n

Site saturation

n
d

m

d

m

Q Qg Qg

k0
n
√

gN avn
0

n
√

gN avn
0

aOnly possible to proof analytically for d/m having an integer value.

the conclusion in ref. [8] that the kinetic parameters
for isochronal and isothermal annealing are not equal
is obvious in view of the assumption made, but unjus-
tified. If the kinetic descriptions used for isothermal
and non-isothermal transformations are compatible, as
in this work, then the kinetic parameters for isothermal
and for non-isothermal annealing are equal, as is shown
in Table I, for the cases considered.

4.4. General representation of the overall
activation energy; mixture of
nucleation mechanisms

The expressions for the overall, effective activation en-
ergy, Q, given in Table I can be represented by a single
equation, incorporating the exponent n, the ratio of the
number of growth dimensions and the growth mode,
d/m, and the separate activation energies for nucleation,
QN , and for growth, Qg, as follows:

Q =
d
m Qg + (

n − d
m

)
QN

n
, (25)

where n has the value d
m in the case of site satu-

ration and d
m + 1 in the case of continuous nucle-

ation. Equation 25 pertains to both isothermal and
non-isothermal annealing. For the case of isothermal
annealing an equation similar to Equation 25 has been
given in refs. [9, 14]. Equation 25 demonstrates that,
for the cases considered, the effective activation energy
Q can be conceived as a weighted sum of the activa-
tion energies for nucleation and growth, with d

nm and
(n − d

m )/n as weighing factors. It is suggested here (and
this will be verified: Section 6) that this equation has
a more general validity, and thus it may be applied
to cases where a mixture of nucleation mechanisms
occurs. No JMA-like equations can be derived for such
cases (see Section 6), and thus exact explicit analytical
expressions for Q cannot be given.
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5. Determination of kinetic parameters
In order to evaluate the kinetics of a transforma-
tion, measurements have to be performed from which
the transformed fraction as a function of time and
temperature can be obtained. By adopting a certain
function f = F(β) (Equation 1), which describes the
relation between the path variable β and the trans-
formed fraction, f , it is possible to calculate β as a
function of time/temperature from the measurement.

If JMA kinetics occurs, the function F is given by
Equation 19. Then, if values for the transformed frac-
tion are known from measurements, the corresponding
values of βn are also known. The kinetic parameters n,
Q and k0, can then be determined from the βn data as
follows.

For isothermal annealing it holds (cf. Equation 4):

βn = (k(T )t)n. (26)

Both parameters k(T ) and n can be determined from
one isothermal experiment (i.e. measuring the progress
of the transformation as a function of time at a con-
stant temperature) comprising at least two data points
(t , βn). Determination of Q and k0, incorporated in
k(T ) according to Equation 3, requires at least two such
isothermal experiments, each at a different temperature.

For isochronal annealing it holds (cf. Equation 24):

βn ≈
(

k0
Rt ′2

Q
e
(
− Q

R
t ′
))n

. (27)

In practical cases, βn is measured as a function of tem-
perature T . In order to obtain an equation compatible
with this measurement, back substitution of t ′

e by T/


in the right hand side of Equation 27 is often performed
(see below Equation 21).

In principle, values of n, Q and k0 can be ob-
tained from one isochronal experiment (i.e. measur-
ing the progress of the transformation as a function of
time/temperature at a constant heating rate) compris-
ing at least three data points (t ′

e, β
n). Substituting these

three (t ′
e, β

n) pairs in Equation 27, leads to a system of
three equations with the three unknowns, k0, Q and n.
A unique analytical solution for this system of equa-
tions does exist, but, upon testing this method in prac-
tice, it was observed that the values thus obtained for
the kinetic parameters appeared to be extremely sensi-
tive to small changes in the values of the measured data
(t ′

e, β
n), rendering the results obtained in this way prac-

tically meaningless. Therefore, in practice, at least two
isochronal heating experiments, with different heating
rates 
, are required.

It should be noted that (only) the value for the overall,
effective activation energy can be determined without
recourse to a specific kinetic model; see discussion in
ref. [5].

The accuracy of the determination of the kinetic
parameters can be increased by choosing the
temperature-time program parameters (
 (isochronal
experiments) or T (isothermal experiments)) far apart,
but this is bound to practical limits.

6. Determination and interpretation of kinetic
parameters; practical limits in the use
of the JMA description

If one attempts to describe the kinetics as observed in
practice with JMA-like equations, one very often ob-
tains values for the JMA exponent which cannot be in-
terpreted directly on the basis of Table I: the value of the
JMA exponent appears to be between the JMA expo-
nent expected for site saturation and the JMA exponent
expected for continuous nucleation. In these cases, it
may be deduced that the actual nucleation is of ‘inter-
mediate’ nature. However, a JMA description is in prin-
ciple not applicable to cases where a mixture of nucle-
ation mechanisms operates (see Section 4.3). This has
not always been realised, for example see refs. [20, 21].
Nevertheless, it is worthwhile to investigate the (extent
of) applicability of JMA for cases of intermediate nu-
cleation too. Further, knowledge about the validity of
Equation 25, suggested to be of general applicability in
Section 4.4, is desired.

6.1. Exact vs. JMA kinetics; the effective
activation energy

As explained before (Section 4.3), analytical results
cannot be derived for an arbitrary combination of the
nucleation and growth models and therefore the recipe
at the beginning of Section 4 is used for numerical cal-
culation of the transformed fraction. Then JMA kinetics
is fitted to this transformed fraction as function of
time/temperature. Thereby the following steps are per-
formed successively.

1. Values are chosen for the model parameters Qg,
v0 and d/m (Equation 14) and QN (Equations 5d
and c), and N0 and N ∗ (Equation 5c) or λ0 and N ′
(Equation 5d); i.e. a mixture of nucleation mechanisms
is adopted.

2. Rigorous numerical application of the recipe given
in the beginning of Section 4 provides the transformed
fraction f as a function of time/temperature. This cal-
culation is performed for five different temperatures
(isothermal annealing) or five different heating rates
(isochronal annealing).

3. JMA kinetics, (i.e. Equation 2 or 4, in combination
with Equations 3 and 19) is fitted to the transformed
fraction as obtained in step 2 simultaneously for the
five different temperatures (isothermal annealing) or
the five different heating rates (isochronal annealing).
Fitting is performed by minimisation of the sum of the
squares of the residuals, employing a simplex fitting
procedure [22]. Thus, values for the (JMA) kinetic pa-
rameters n, Q, and k0 are obtained.

The above procedure has been performed for a range of
values of N0 and N ∗ (Equation 5c) or λ0 (Equation 5d).
Thus, the mode of transformation varies from pure site
saturation to pure continuous nucleation. The values
of the preset kinetic parameters have been gathered
in Table II. The applicability of JMA kinetics for the
cases of intermediate nucleation can be judged from
the goodness of the fits. The exponent n should vary
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T ABL E I I Values of the kinetic parameters as used in the model calculations for isothermal and isochronal annealings for a case of mixture of
nucleation mechanisms, Avrami nucleation according to Equation 5d and site saturation + continuous nucleation according to Equation 5c, and the
growth mechanisms pertaining to both (volume) diffusion and interface controlled growth, according to Equation 14

Avrami nucleation Site saturation + continuous nucleation

Qg (kJ/mol) 200 Qg (kJ/mol) 200

v0 (s−1) 1 × 109 v0 (s−1) 1 × 109

d/m 3 d/m 3

QN (kJ/mol) 100 QN (kJ/mol) 100

λstart
0 (s−1) 1 × 105 λend

0 (s−1) 1 × 108 N start
0 (s−1) 5 × 1015 N end

0 (s−1) 5 × 1013

N ′ 5 × 1015 N∗start 5 × 108 N∗end 5 × 1010

(a)

(b)

(c)

Figure 2 (a) Transformed fraction, f , versus time, for five isothermal
holding temperatures. The model calculations (·) using Avrami nucle-
ation and the JMA fit (—), for the maximum least squares difference
between the transformed fraction according to the model calculations
and the JMA fit, are shown. λ0 has a value of 1.46 × 106 s−1. (b) Least
squares difference of the transformed fraction according to the model
calculations and the fitted JMA kinetics, as a function of JMA exponent
as determined in the fits. (c) Activation energy as a function of fitted
JMA exponent both according to Equation 25 (x), using the parameter
prescriptions as given in Table II, and according to the fits (+).

from d/m (site saturation) to d/m + 1 (continuous nu-
cleation). The values obtained for the activation energy
Q as a function of exponent n can be considered to
see if Equation 25 holds for the cases of intermediate
nucleation.

The results of the exact numerical calculations of
the kinetics and the fits of JMA kinetics are shown in
Figs 2–5. In the upper part of the figures the transformed
fraction as a function of time/temperature is shown for
the case of the worst fit (the maximum in the middle
part of the figures). The error in the fit is given in the
middle part of the figures as a function of the fitted
JMA exponent, i.e. the least squares difference between
the exact calculated transformed fraction, f (t), and the
JMA fitted f (t).

Clearly, the JMA description provides a reasonable
fit, also in the cases where it does not hold in principle.

(a)

(b)

(c)

Figure 3 (a) Transformed fraction, f , versus temperature, for five heat-
ing rates. The model calculations (·) using Avrami nucleation and the
JMA fit (—), for the maximum least squares difference between the
transformed fraction according to the model calculations and the JMA
fit, are shown. λ0 has a value of 5.18 × 106 s−1. (b) Least squares differ-
ence of the transformed fraction according to the model calculations and
the fitted JMA kinetics, as a function of JMA exponent as determined in
the fits. (c) Activation energy as a function of fitted JMA exponent, both
according to Equation 25 (x), using the parameter prescriptions as given
in Table II and according to the fits (+).

Note that the calculations have been performed for a
broad ‘experimental’ window in relation to the kinetic
parameters. A temperature range of 50 K has been used
for the isothermal transformations, in which the trans-
formation time varies over two decades. Five decades
in heating rate have been used for isochronal annealing,
in which the transformation temperature varies over a
temperature range of 250 K.

The activation energy obtained by fitting has been
plotted vs. the JMA exponent as obtained by fitting in
Figs 2c–5c. In these figures, the predicted values of
the activation energy according to Equation 25 have
also been shown. It can be concluded that Equation 25
provides a very good description of the operating, ef-
fective activation energy (difference within 3%)
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(a)

(b)

(c)

Figure 4 (a) Transformed fraction, f , versus time, for five isothermal
holding temperatures. The model calculations (·) using the summation
nucleation model and the JMA fit (—), for the maximum least squares
difference between the transformed fraction according to the model cal-
culations and the JMA fit, are shown. The mixing parameters from the
nucleation model have the following values: N � = 1.0 · 1010 m−3 and
N0 = 2.5 · 1014 s−1 m−3. (b) Least squares difference of the transformed
fraction according to the model calculations and the fitted JMA kinetics,
as a function of JMA exponent as determined in the fits. (c) Activation en-
ergy as a function of fitted JMA exponent, both according to Equation 25
(x), using the parameter prescriptions as given in Table II and according
to the fits (+).

6.2. Determination of separate activation
energies for nucleation and growth

The effective activation energy as a function of the JMA
exponent can experimentally be determined if it is pos-
sible to vary the mode of the nucleation for the observed
phase transformation. From these data the separate ac-
tivation energies for nucleation and growth can be de-
termined using Equation 25.

This case can be illustrated using several data points
from the simulations dealt with in Section 6.1. From
Figs 2c–5c, the (n, Q) data points pertaining to the
end points of the n range and the (n, Q) data point
corresponding to Figs 2a–5a (i.e. the maximum in
2b–5b) have been used. Fitting of Equation 25 to
the three (n, Q) data points leads to values for the
activation energies for nucleation and growth, given
in Table III together with to corresponding exact
values:

T ABL E I I I The Activation energy for nucleation QN and the acti-
vation energy for growth Qg as put in the model and determined by
fitting Equation 25 to three (n, Q) data points from the calculated cases
considered in Section 6.1. The value of d/m is taken 3

QN (kJ/mol) Qg (kJ/mol)

Input (see Table II) 100 200
Isothermal Avrami nucleation 97.7 198.9
Isochronal Avrami nucleation 97.1 200.4
Isothermal summation (see 3.1.2.1(a)) 100.9 199.9
Isochronal summation (see 3.1.2.1(a)) 103.9 199.5

(a)

(b)

(c)

Figure 5 (a) Transformed fraction, f , versus temperature, for five heat-
ing rates. The model calculations (·) using the summation nucleation
model and the JMA fit (—), for the maximum least squares differ-
ence between the transformed fraction according to the model calcu-
lations and the JMA fit, are shown. The mixing parameters for the
nucleation model have the following values: N � = 1.4 · 109 m−3 and
N0 = 3.5 · 1014 s−1 m−3. (b) Least squares difference of the transformed
fraction according to the model calculations and the fitted JMA kinetics,
as a function of JMA exponent as determined in the fits. (c) Activation
energy as a function of fitted JMA exponent, both according to Equa-
tion 25 (x), using the parameter prescriptions as given in Table II and
according to the fits (+).

Clearly, adoption of Equation 25 leads to practi-
cally correct values of the activation energies for nu-
cleation and growth for both isothermal and isochronal
transformations.

6.3. Experimental example: crystallisation
of bulk amorphous Pd40Cu30P20Ni10

The kinetics of the crystallisation of bulk amorphous
Pd40Cu30P20Ni10 can be investigated on the basis of
measurements performed in this project and as pre-
sented in ref. [23]. Isothermal pre-annealing in the
supercooled liquid temperature range has significant
influence on the kinetics of the transformation (see
Fig. 6). Experimental details regarding specimen prepa-
ration and DSC analysis have been described in
ref. [23].

The JMA kinetic parameters have been determined
by fitting a JMA model to the measurements for 5
heating rates simultaneously. The values obtained for
the kinetic parameters of the transformation have been
given in Table IV.

This transformation involves three-dimensional dif-
fusional growth and the pre-annealing has no influence
on the growth mechanism [23]. Thus d/m has the con-
stant value 3/2. According to the theoretical treatment
(see Section 4.4), the value of n can vary between d/m
(3/2) in the case of site saturation and d/m + 1 (5/2) in
the case of continuous nucleation.

1329



T ABL E IV The JMA exponent n and the effective activation energy
Q for isochronal crystallisation of amorphous Pd40Cu30P20Ni10 as de-
termined by fitting

Pre annealing
temperature (K) n Q (kJ mol−1)

623 2.44 292
625 2.04 304
626 2.01 300
628 1.71 307
629 1.55 317

Figure 6 DSC scans for heating rate 20 K/min showing crystallisation
behaviour of initially amorphous Pd40Cu30P20Ni10. Results are shown
as obtained after different pre-annealing heat treatments of 600 s at the
temperatures 623, 626 and 629 K.

Figure 7 The effective activation energy, Q, as a function of JMA expo-
nent, n, as measured (�) and as fitted according to Equation 25 (full line)
using d/m = 3/2.

Equation 25 can be fitted to the 5 data points gath-
ered in Table IV, corresponding to the 5 different pre-
anneals, leading to determination of values for the
separate activation energies for nucleation and growth
(Section 6.2). The activation energy for nucleation is
found to be 252 kJ/mol and the activation energy for
growth is found to be 318 kJ/mol; see also Fig. 7. The
value of the activation energy for nucleation as deter-
mined here is within the range of activation energies

for nucleation for metal-metalloid glasses (Co70B30:
191 kJ/mol, Fe65Ni10B25: 300 kJ/mol [24]). The value
of the activation energy for diffusion as determined
here (318 kJ/mol) is low in comparison to the activa-
tion energy for Au diffusion in amorphous Pd40Ni40P20
(420 kJ/mol) [25] and is high in comparison to the
values for self diffusion in the crystalline constituents:
Pd 266 kJ/mol, Cu 209 kJ/mol and Ni 285 kJ/mol [26],
which is reasonable.

7. Conclusions
(i) Both for isothermal and non-isothermal transforma-
tions the degree of transformation is uniquely described
by the path variable β (Equation 1), which is given, in-
dependent of the time-temperature program, by Equa-
tions 2 and 3. The Johnson–Mehl–Avrami (JMA) equa-
tion is compatible with this concept: there is one
JMA equation for both isothermal and non-isothermal
transformations only if expressed in terms of β

(Equation 19).
(ii) The JMA equation (transformed fraction, f ,

as function of β) holds only for specific, extreme
cases of nucleation: pure site saturation or pure con-
tinuous nucleation. For general phase transformations,
in particular if a mixture of nucleation mechanisms,
in association with diffusion or interface controlled
growth mechanisms, occurs, JMA kinetics does not
hold in principle. However, the JMA equation can
provide a good description of the reaction kinetics
also in such cases as demonstrated by the model
simulations.

(iii) The values for the JMA kinetics parameters
are equal for isothermally and isochronally conducted
phase transformations, in contrast with earlier pub-
lished results.

(iv) The effective activation energy can be given for
very many transformations as a weighted sum of the
separate activation energies for nucleation and growth,
with the weights d/mn for growth and 1-d/mn for nu-
cleation, where d is the dimensionality of the growth,
n is the JMA exponent and m depends on the growth
mode: m = 1 for interface controlled growth, and m = 2
for diffusion controlled growth (Equation 25). This
result allows determination of the separate activation
energies for nucleation and growth by varying the
mode of nucleation for a phase transformation, e.g. by
pre-annealing.

Appendix A: Calculating the kinetic
parameters analytically
A.1. Site saturation
The extended volume of N ∗ particles growing from
time 0 until time t is given by:

V e = VN ∗g
(∫ te

0
v0 exp

(
− Qg

RT (t)

)
dt

) d
m

, (A.1)

with the parameters as given under Equations 14 and 15.
This Equation A.1 is in the same form as JMA kinetics
(see Equations 2, 3 and 19):
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V e = V

(∫ te

0
k0 exp

(
− Q

RT (t)

)
dt

)n

. (A.2)

If it now is considered that k0 and n from Equation A.2
and v0, N ∗, g, d and m from Equation A.1 are indepen-
dent of time, it can be shown that:

V e = V kn
0

(∫ te

0
exp

(
− Q

RT (t)

)
dt

)n

= V N ∗gv
d
m

0

(∫ te

0
exp

(
− Qg

RT (t)

)
dt

) d
m

,

(A.3)

and, from Equation A.3, the JMA parameters can be
given in terms of nucleation and growth:

n = d

m
Q = Qg. (A.4)

k0 = (
N ∗vn

0
g
) 1

n

These values for the JMA parameters do not depend
on the time temperature program and, as shown, can be
derived without any mathematical assumptions.

A.2. Continuous nucleation during
isothermal annealing
The extended volume from a ‘Continuous Nucleation’
process as described can be given by:

V e = V
∫ te

0
gN0 exp

(
− QN

RT

)

×
( ∫ te

τ

v0 exp

(
− Qg

RT

)
dt

) d
m

dτ, (A.5)

with the same parameters as in Equation A.1, apart from
N0 which is the temperature independent nucleation
rate, and QN is the activation energy for nucleation.

If the isothermal case is considered, it can be shown
that:

V e = V
∫ te

0
gN0v

d
m

0 exp

(
− QN

RT

)
exp

(
−

d
m Qg

RT

)

× (te − τ )
d
m dτ, (A.6)

which in turn can be integrated, and equated to the in-
tegrated version of Equation A.2 to give:

V e

V
≈ g

2
v0 N0C(R
)3 exp

(
− QN + Qg

R
t ′
e

)
t ′4
e

C = 2
Q2

N Q2
g + QN Q3

g − 6R
t ′
e QN Q2

g − 2R
t ′
e Q3

g − 6(R
t ′
e)2 Q2

N + 8(R
t ′
e)2 QN Qg + 4(R
t ′

e)2 Q2
g

Q2
g Q2

N (QN + Qg)2

≈ 2

QN (QN + Qg)
(A.11)

V e = V kn
0 exp

(
− nQ

RT

)
tn = V g

1
d
m + 1

N0v
d
m

0

× exp

(
−

d
m Qg + QN

RT

)
t
(

d
m +1

)
, (A.7)

and thus, the JMA parameters can be given by:

n = d

m
+ 1

Q = (n − 1)Qg + QN

n
. (A.8)

k0 =
(

N0v
n−1
0

g

n

) 1
n

A.3. Continuous nucleation during
isochronal annealing
During isochronal annealing, the temperature depends
on time as is shown in Equation 20. If this equation is
combined with Equation A.2, it is impossible to inte-
grate the resulting equations without any mathematical
assumptions.

By using the mathematical assumption (Equation 24)
twice, once for the inner integral in Equation A.5, and
once for the outer integral in Equation A.5, it is possible
to perform the integration. The inner integral can be
written as:

∫ te
′

τ

v0 exp

(
− Qg

R
t ′

)
dt ′ =v0

(
f

(
R
t ′

e

Qg

)
− f

(
R
τ

Qg

))
(A.9)

f

(
R
t ′

e

Qg

)
= R
t ′2

e

Qg
exp

(
− Qg

R
t ′
e

)[
1 − 2

R
t ′
e

Qg

]
.

Now filling this out in Equation A.5 it follows:

Ve

V
=

∫ t ′
e

0
gN0 exp

(
− QN

R
t ′
e

)

×
( ∫ t ′

e

τ

v0 exp

(
− Qg

R
t ′
e

)
dt ′

) d
m

dτ =
∫ t ′

e

0
gN0v

d
m

0

× exp

(
− QN

R
t ′
e

)(
f

(
R
t ′

e

Qg

)
− f

(
R
τ

Qg

)) d
m

dτ

(A.10)

This integration can be made using the same analytical
approximation of the exponential in two terms, giving
for the case of d/m = 1:
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This latter approximation is based on R
t ′
e �Q, which

is also the assumption needed for the termination of the
approximation series is used twice in Equation A.10 in
only the first order, the results obtained then are:

V e

V
≈ g

2
v0 N0C(R
)3 exp

(
− QN + Qg

R
t ′
e

)
t ′4
e

C = 2

QN (QN + Qg)
. (A.12)

It is seen that C is a constant, defined by the activa-
tion energies of nucleation and growth. It is also seen
that the second order approximation is not needed in
the integration, as the both assumptions will give the
same result. Nevertheless, it is checked for the cases of
d/m = 2 and d/m = 3 that the first and the second order
approximation give the same result. It is seen, that the
second order approximation is not needed in the cal-
culation, and therefore, the first order approximation
results are shown here.

For the cases of d/m = 2 and d/m = 3, first the case
of d/m = 2:

V e

V
= g

3
N0v

2
0C(R
)3 exp

(
− QN + 2Qg

R
t ′

)
t ′6

C = 6

QN (QN + Qg)(QN + 2Qg)
(A.13)

And the case of d/m = 3:

V e

V
= g

4
N0v

3
0C(R
)4 exp

(
− QN + 3Qg

R
t ′
e

)
t ′8
e

C = 24

QN (QN + Qg)(QN + 2Qg)(QN + 3Qg)

(A.14)

In order to obtain the JMA kinetic parameters, Equa-
tions A.12–A.14 are supposed to be identical to the
JMA expression for Ve/V (Equation A.2). For the com-
parison however, the same mathematical approxima-
tion is used for Equation A.2, also only developed in
the first order:( ∫ te′

0
k0 exp

(
− Q

R
t ′

)
dt ′

)n

≈ kn
0

(

R

Q

)n

exp

(
− nQ

R
t ′
e

)
t ′2n
e . (A.15)

If it is now supposed that Equation A.15 equals Equa-
tions A.12–A.14 respectively, then the values for the
JMA kinetic parameters are given by:

n = d

m
+ 1

Q = (n − 1)Qg + QN

n
. (A.16)

k0 =
(

N0v
n−1
0

g

n
C Qn

) 1
n

Now, in this equation, the value of CQn can be given in
a more general form, which is proven to be correct for

n = 2, 3 and 4:

s = CQn = (n − 1)!

n(n−1)

(QN + (n − 1)Qg)n

j=n−1∏
j=0

(QN + j Qg)

. (A.17)

This factor corrects for a difference in activation energy
for nucleation and growth.

To conclude, one can calculate analytically the JMA
parameters from Arrhenius nucleation and Arrhenius
growth. The mathematical approximation to be made
is used several times in the case of continuous nucle-
ation on isochronal heating. The development of the
exponential integral is used only in the first order ap-
proximation. This is correct in the case that RT � Q
for the used temperature and activation energy of inter-
est. Usually, for solid-state phase transformations, this
is the case.

The kinetic parameters n and Q obtained are exactly
the same for the isochronal and isothermal annealing.
The value of the pre-exponential factor k0 however is
not exactly the same in all cases.
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